La cellule, ses organites et leurs fonctions

La cellule et sa membrane plasmique

 

Biologie cellulaire = connaissance de la cellule

Cellule = chambre, espace limité

 

Temps de travail prévu  :  60 minutes

Sommaire :

:: Le concept cellule
:: L'anatomie d'une cellule
:: Les organites dans le cytoplasme
La membrane plasmique
    :: Lipides et protéines
    :: Les lipides en double couche
    :: Les protéines de la membrane cytoplasmique
    :: Différentes protéines sont associées aux membranes de différentes façons
    :: La diffusion latérale et les restrictions de mouvement de protéines dans la membrane plasmique : les microdomaines


Le concept cellule

Le concept de cellule a été énoncé en 1838 par Schwann et Schleiden. En terme général la théorie cellulaire postulait que tous les tissus vivants sont composés de cellules et de leurs produits (la matrice extracellulaire). Le concept a été facilement accepté par les microscopistes exceptés ceux du système nerveux qui persistaient à penser que c'était un "continuum" (une continuité) : une structure sans compartiments séparés. C'est Ramon y Cajal à partir de 1900 qui introduisit et généralisa la notion de neurone, la cellule nerveuse, faisant du tissu nerveux un tissu comparable aux autres.

Un organisme complexe est constitué de tissus possédant différentes fonctions, eux-mêmes formant des organes spécialisés (voir figure 1). La formation d'un tissu implique à la fois un processus de prolifération (augmentation de masse) et un processus de différenciation (spécialisation).

Figure 1. La hiérarchie du vivant

    Voir une version animée de cette figure
 Macromedia Flash - 22,2Ko

  

Pour en savoir plus, consultez le site suivant :
http://www.sciences.fundp.ac.be/biologie/bio2001/bioscope/
1838_schleidenschwann/schleidenschwann.html
.

Sommaire


L'anatomie d'une cellule

La cellule est une unité vivante qui a sa vie propre, c'est-à-dire qui a sa propre homéostasie (biochimie), mais en même temps doit répondre aux besoins de l'organisme, c'est-à-dire doit être réceptive (voir figure 2).

Figure 2. Flux

    Voir une version interactive de cette figure
 Macromedia Flash - 6,84Ko

Les cellules sont caractérisées par leur membrane, leur noyau et leur cytoplasme.
Une cellule a un diamètre de à et contient environ un milliard de molécules protéiques, constituant à peu près 60 de sa masse sèche. On pense qu'il y a environ 10.000 types différents de protéines dans une cellule. Pour bien fonctionner, les cellules ont compartimenté leur processus biochimiques dans le cytoplasme et ces compartiments sont les organites cellulaires (ou organelles) (voir figure 3).

    Voir une version interactive de cette figure
 Macromedia Flash - 19,8Ko

Figure 3. Organelles

Les organites ont leur anatomie fonctionnelle et ont leur processus biochimiques propres.

Sommaire


Les organites dans le cytoplasme

Selon leur fonction principale, les organites interviennent dans les processus de synthèse ou de dégradation métaboliques. Cette distinction arbitraire a l'intérêt de montrer le dynamisme du métabolisme cellulaire. Les constitutants sont soumis à un renouvellement permanent qui permet à la cellule de répondre au mieux aux sollicitations physiologiques.

Figure 4. Les organites dans le cytoplasme

   Pour la synthèse

   Pour la dégradation

   Pour la structure

 

En général, toutes les cellules ont les mêmes organites, mais en fonction de leur rôle dans l'organisme (de leur spécialisation), ils sont plus ou moins développés (plus ou moins apparents). Exemples :

Sommaire


La membrane plasmique

 

Sommaire


La membrane plasmique
Lipides et protéines

Les cellules sont entourées par la membrane plasmique qui est essentiellement une barrière indispensable entre le cytoplasme et le milieu extracellulaire. La membrane plasmique est un film très fin constituté de molécules protéiques (50 de la masse) et lipidiques (également 50). Il faut bien comprendre que la taille des molécules lipidiques est petite (environ 700 Da) comparée à celle des molécules protéiques ( > 10.000 Da). Dans la membrane il y a donc beaucoup plus de molécules lipidiques que de molécules protéiques.

Sommaire


La membrane plasmique
Les lipides en double couche

Les lipides forment une double couche (épaisse de 5 à 6 nm) qui est relativement imperméable au passage de la plupart des molécules hydrosolubles (protéines, hormones, ions) (voir figure 5). Cette propriété est bien illustrée par une expérience de diffusion des ions potassium (K+). Alors que les ions K+ arrivent à un équilibre de diffusion dans l'eau sur une distance de 6 nm en 5 millisecondes, il leur faut 12 jours pour arriver à l'équilibre à travers une double couche de lipides. Même les petites molécules comme le glucose ou l'adrénaline mettent un temps considérable pour traverser. La membrane est donc une barrière très efficace ! Mais elle peut facilement être franchie par des molécules hydrophobes telles que les alcools, les stéroïdes et les anesthésiques généraux (pentobarbital).

Les propriétés de perméabilité d'une double couche lipidique artificielle sans protéines sont indiquées dans la figure 5 ci-dessous.

Figure 5. Perméabilité d'une double couche lipidique

La structure en double couche est due aux propriétés amphiphiles des molécules lipidiques. Celles-ci possèdent ainsi une extrémité hydrophile (aimant l'eau ou polaire) et une extrémité hydrophobe (craignant l'eau ou apolaire) (voir figure 6).

Il existe une grande variabilité de lipides membranaires. Les plus abondants sont les phospholipides qui sont composés d'une tête polaire contenant un groupement phosphate et de deux bras hydrocarbonés présentant ou non une certaine courbure (acides gras). Dans un environnement aqueux, les têtes polaires s'orientent vers l'extérieur et les bras apolaires vers l'intérieur de la membrane. La double couche lipidique est fluide du fait de la double mobilité, latérale et de rotation, des lipides (cliquez la figure 6).

Il y a peu d'échanges de lipides d'une couche à l'autre de la membrane (mouvements verticaux ou flip-flop), ce qui permet l'obtention de distributions asymétriques des différents lipides et confère ainsi des fonctions discriminatives aux feuillets membranaires selon qu'ils sont orientés vers l'extérieur ou vers le cytosol. Dans la membrane de l'hématie humaine, par exemple, tous les lipides contenant la choline, la phosphatidylcholine, la sphingomyéline et les glycolipides se trouvent à l'extérieur, alors que, pour la plupart, les phosphatidyléthanolamines et les phosphatidylsérines sont présents sur le feuillet interne. Dans un environnement aqueux, les lipides membranaire peuvent adopter deux autres configurations : la micelle au l'association avec une protéines (lipoprotéine) (voir figure 6).

Figure 6. Phospholipide

    Configurations et mouvements des phospholipides
 Macromedia Flash - 49,7Ko

Les lipoprotéines jouent un rôle important dans le transport des lipides dans l'organisme mais sont aussi impliquées dans la distribution des lipides dans la cellule. .

    Cliquez ici pour voir la composition lipidique de la membrane plasmique
des cellules hépatiques (figure 7)
 Macromedia Flash - 10,4Ko

Les lipides sont synthétisés dans le réticulum endoplasmique lisse et c'est là que l'asymétrie des couches est engendrée par des protéines d'échange des phospholipides (lipoprotéines intracellulaires). L'asymétrie lipidique est importante sur le plan fonctionnel surtout dans la localisation des protéines liées à la membrane et intervenant dans la transduction du signal.

Certains lipides sont glycosylés : les glycolipides (voir figure 8).

Figure 8. Glycolipide

Les résidus glucidiques, tels que galactose, glucose mais aussi acide sialique, sont ajoutés dans l'appareil de Golgi. Les glycolipides sont toujours associés au feuillet membranaire externe et appartiennent à un ensemble que l'on appelle le glycocalyx. Le glycocalyx est la zone périphérique cellulaire riche en glucides (voir plus loin la page "Différentes protéines sont associées aux membranes de différentes façons"). Parce que les résidus glucidiques liés avec les protéines sont souvent impliqués dans les interactions de la cellule avec son environnement, il est possible que les glycolipides jouent un rôle analogue (cf. les sélectines dans la ressource sur les molécules d'adhérence).

Le cholestérol est un lipide de structure distincte. Il joue un rôle particulier au sein de la membrane (voir figure 9), en la rendant moins déformable (plus rigide) et en diminuant sa perméabilité aux petites molécules hydrosolubles.

Figure 9. Le cholestérol

Sommaire


La membrane plasmique
Les protéines de la membrane cytoplasmique

Bien que la structure de base de la membrane plasmique (et de toute membrane biologique) soit déterminée par la double couche lipidique, la plupart des fonctions spécifiques sont portées par les protéines. En conséquence, entre les différents types de cellules, les quantités et les types de protéines dans la membrane plasmique sont extrêmement variables. Des différences structurales et fonctionnelles existent également entre la membrane plasmique et les membranes intracellulaires des organites (mitochondrie, noyau, etc.).

Les fonctions principales des protéines membranaires sont (voir figure 10) :

    Cliquez ici pour voir une représentation interactive de ces fonctions (figure 10)
 Macromedia Flash - 22,3Ko

Sommaire


La membrane plasmique
Différentes protéines sont associées aux membranes de différentes façons

On distingue différentes formes d'associations protéiques à la membrane :

Figure 11. Associations protéiques à la membrane plasmique

Les protéines transmembranaires traversent la membrane hydrophobe par une séquence particulière de 20 à 30 acides aminés agencés en hélice-. Au sein de cette structure, les interactions hydrophiles (liaisons hydrogènes) se produisent à l'intérieur (type 1 de la figure 11), tandis que l'extérieur de l'hélice- est hydrophobe et donc compatible avec l'environnment apolaire lipidique. La connaissance de la séquence en acides aminés d'une protéine permet de prédire quelles sont les parties de la chaîne polypeptidique qui traversent la double couche lipidique sous la forme d'une hélice-. Les segments d'hydrophobicité sont identifiables grâce à leur profil d'hydropathie. Les protéines transmembranaires ne sont pas solubles dans l'eau et ne peuvent être solubilisées qu'en présence de détergents.

Les protéines transmembranaires à traversées multiples ont adopté deux conformations possibles : soit elles passent la membrane en plusieurs hélice- (voir figure 12) soit elles passent en conformation bande- adoptant une structure tonneau qui permet de ménager des canaux (la bande- n'est pas représentée sur la figure).

Figure 12. Une conformation des protéines transmembranaires

La plupart des protéines de la membrane plasmique sont couplées à des glucides du côté extracellulaire de la membrane (voir figures 11 et 12). Ces glucides sont présents sous forme de chaînes oligosaccharidiques liées de façon covalente aux protéines qui sont alors nommées glycoprotéines (cf. les ressources sur synthèse et maturation des protéines). Comme les glycolipides, les glycoprotéines se trouvent toujours dans la moitié externe de la double couche lipidique et appartiennent également au glycocalyx. Cette zone péricellulaire riche en glucides joue un rôle dans les processus de reconnaissance cellulaire (cf. les sélectines dans la ressource sur les molécules d'adhésion) et protège la cellule contre les agressions mécaniques (flux sanguin), chimiques (acidité gastrique) et enzymatiques (protéases).

Sommaire


La membrane plasmique
La diffusion latérale et les restrictions de mouvement de protéines dans la membrane plasmique : les microdomaines

Comme les lipides, les protéines membranaires sont capables de se déplacer latéralement (diffusion latérale). La première preuve directe de la mobilité de certaines protéines dans le plan de la membrane fut apportée par des expériences utilisant des cellules hybrides qui étaient produites artificiellement en fusionnant des cellules de souris et des cellules humaines (voir figure 13).

Figure 13. Fusion et mobilité

    Voir une version animée de cette figure
 Macromedia Flash - 31,0Ko

Deux anticorps marqués différemment ont été utilisés pour distinguer les protéines de la membrane plasmique d'origine murine (murin/murine = de souris) et humaine. Les deux types de protéines se répartissent normalement de manière homogène au cours du temps (30 minutes).

Cependant, les cellules ont les moyens de limiter la diffusion des protéines à des domaines spécifiques de la membrane, engendrant ainsi une polarité cellulaire fonctionnelle. Il y a trois moyens de restreindre la mobilité de protéines spécifiques de la membrane plasmique (moyens illustrés figures 14 à 17) :

   Les liaisons de protéines membranaires au cytosquelette
      ou à d'autres protéines intracellulaires :

Figure 14. Liaison intracellulaire,
contact avec le cytosquelette

    Version animée de cette figure
 Macromedia Flash - 18,5Ko

 

   Les liaisons de protéines membranaires à des complexes
       protéiques extracellulaires (cellules adjacentes ou matrice) :

    Version animée de cette figure
 Macromedia Flash - 18,0Ko

Figure 15. Liaison extracellulaire,
contact cellule-cellule

Figure 16 Liaison extracellulaire,
contact cellule-matrice extracellulaire

    Version animée de cette figure
 Macromedia Flash - 14,8Ko

 

   Assemblage de protéines membranaires en grands complexes
macromoléculaires (sous-unités de récepteur par exemple)
 :

Figure 17. Formation de complexes protéiques
dans la membrane

 

Le phénomène de polarisation fonctionnelle est particulièrement bien illustré par les cellules épithéliales dans lesquelles on identifie un pôle apical, un pôle basal et des faces latérales. Certaines protéines sont strictement localisées coté apical, les transporteurs de Na+/glucose, d'autres se trouvent coté latéral, les occludines des jonctions serrées, et d'autres enfin se trouvent au pôle basal (intégrines touchant la lame basale, voir figure 18).

Figure 18

Les compositions lipidiques de ces domaines membranaires (apical, latéral ou basal) sont également différentes, démontrant que les cellules épithéliales peuvent contrôler également la répartition des molécules lipidiques.

Il faut bien comprendre qu'en dehors des organites, il existe encore un autre niveau de compartimentation : les microdomaines de protéines ou lipides. Il a été montré que ces microdomaines jouent un rôle important dans le fonctionnement des cellules surtout au niveau de la transduction des signaux par récepteur interposé.

Sommaire